

MASTERPLAN

CONFIGURATION AND INTEGRATION OF A NODE

Configuring and integrating a node 25032024 1

EventAPIs
This is quick guide for configuration and integration of a node with a backend
system. It is about eventAPIs as supported by the openAPIs of the node. These
openAPIs are identified as follows in the FEDeRATED Reference Architecture
(chapter 9)

Index APIs Description Node APIs Backend APIs

eventAPIs A set of openAPIs to share
events and access data of
links shared by these events.

POST Event

GET Event

GET Data

GET State

POST State

POST Event

GET Data

The Node APIs are those supported by a node and can be called by an IT backend
system. The Backend APIs need to be implemented by an IT backend system and
will be called by a node. The POST Event API of the Backend APIs is a webhook
API; it can be configured.
The logic of these openAPIs is as follows:

• POST Event Node API – an IT backend system of a data holder posts an
event with (optional) link(s) to its node. This event is shared with a data user
node

• POST Event Backend API – a data user receives an indication that a new
event has been received in its node, including the identification (UUID) of that
event.

• GET Event Node API – an data user retrieves the event from the node,
including the optional links.

• GET Data Node API – the data user requests data provided by a link of an
event. This data is to be retrieved from the data holder that posted the event
to its node. This is called ‘link dereferencing’.

• GET Data backend API – upon receiving of a link for which data is requested,
a data holder node initiates this API to retrieve data from its backend system.
This data is converted to semantic data (RDF) by a data holder node and
shared with the data user node as response to the previous GET Data Node
API.

The GET – and POST State Node APIs support a type of publish and subscribe
mechanism. It is not always applicable, especially not for providing data to
supervising authorities. These two Node APIs are replaced by what is called ‘event

https://federatedplatforms.eu/images/Library/Activity2/FEDeRATED_Reference_Architecture.pdf

MASTERPLAN

CONFIGURATION AND INTEGRATION OF A NODE

Configuring and integrating a node 25032024 2

distribution’: a configuration by which a supervising authority receives events for a
regulation in its competence area. An example is:

• Authority: Customs Authority.
• Regulation: Battery Regulation.
• Competence Area: the Netherlands.
• Policy: a data structure specifying the access rights for the combination of the

previous data properties.

The ‘policy’ is the basis for the GET Data Backend API available to a supervising
authority. In case this policy is re-using commercial data, it is a filter on that data set.
Of course, an enterprise must implement the mandatory data requirements of the
policy.
The setting is as follows. Each IT Backend system must implement the Backend
APIs that are called by a node. An IT Backend system can call the Node APIs. Data
is shared between nodes by triples (RDF). Between an IT Backend system and a
node, JSON is the current syntax supported.

The JSON structure between IT backend systems and a node reflects the structure
as implemented by RDF. Additional scripts can be developed that support other
syntaxes and/or divergent JSON structures.
A setup consists of minimal two nodes, a data holder – and data user node. Both
nodes can integrate with IT back-office systems of each organisation and/or can
have a GUI. The integration and GUI is not part of provision of a node. Integration
with an IT back-office system is according to the (data) interface provided by the
semantic adapter.
The following steps must be taken:

1. Installation – each participant downloads and installs a node in its own
domain. As alternative solution, a node can temporarily be installed (during a
project) in the TNO domain.

2. Configuration – this is by applying Semantic Treehouse (prototype of the
Service Registry) for generating RML (RDF Mapping Language) and SHACL
(SHApe Constraint Language) files.

3. Integration – this is about the integration with an IT backend system.

MASTERPLAN

CONFIGURATION AND INTEGRATION OF A NODE

Configuring and integrating a node 25032024 3

Installation is via the GitHub repository with an installation manual.1 Installation
requires the setup of non-repudiation, i.e. the node(s) that implement an immutable
log and audit trail. This can be a node operated by an authority.
Integration is based on the configuration of a node since configuration defines the
events with links to access additional data.
In case integration with IT backend systems is considered at a later stage in a pilot
or Living Lab, a generic GUI can be applied. It interfaces with a node. In this case, a
temporary data store needs to be installed that contains the relevant data. This can
be the triple store of a node.

Configuration
Configuration is about specifying data that is accessible via sharing links with events.
Thus, the structure of these data sets and events must be specified.
These data – and event structures are the payload of the eventAPIs and their
support by a node. The Node APIs are generic in supporting all types of events and
sharing data. The Node APIs are configured as follows:

• Semantic Adapter – transformation of between the JSON eventAPI payload
and RDF. This is by RML (RDF Mapping Language).

• Validator – data quality validation (completeness and correctness). This is by
SHACL.

The Backend API GET Data can be generated as Open API Specification document
for its implementation by an IT Backend System.
The specification steps are:

1. Events. The events with links to data must be agreed between the data
holder and – user or specified by the policy of a supervising authority (see
before). There are two types of events that can be specified, namely:

a. Transaction events. These are the basis for a commercial transaction
between enterprise. They provide information as to whom has provided
a service or product. They are not (necessarily) required by a
supervising authority.

b. Visibility – or association events. These specify an association (in
time and place) between two real-world objects that are represented by
Digital Twins. For instance, a container transported by a vessel or a
battery used in a car. These types are relevant to enterprises and
supervising authorities. A generic structure for visibility events is shown
in the following figure. A similar figure can be made for the association
between products e.g., a battery in a car.

1 GitHub - Federated-BDI/FEDeRATED-BDI: Data sharing infrastructure prototype made for the FEDeRATED
project, federatedplatforms.eu. Docker and Kubernetes versions available in a separate repository.

https://github.com/Federated-BDI/FEDeRATED-BDI
https://github.com/Federated-BDI/FEDeRATED-BDI

MASTERPLAN

CONFIGURATION AND INTEGRATION OF A NODE

Configuring and integrating a node 25032024 4

2. Data retrieval – access policy. Based on links shared via events, the data
that can be pulled by a data user from a data holder is defined. Like said, this
is link dereferencing. It can be data of any Digital Twin referred to via the
event that has been shared. In case of a visibility – or association event, these
are details of for instance a container or a battery. Thus, the data set as a
basis for an access policy is an extension of that of the event that has been
modelled.
This data set is retrieved from the data holder IT backend system (via the
GET Data Backend API) and available to the data user IT backend system
(via the GET Data Node API).

When specifying the events and the required data set for access policies, it is
recommended to take events and data that are supported by existing APIs of a data
holder and see how far they match data (search) requirements of a data user.
Using the prototype Service Registry tool (Semantic Treehouse), RML and SHACL
for configuration of a node for event sharing and link dereferencing, and an OAS for
the access policy (GET Data Backend API) is generated. The OAS can be
implemented by a data holder on its IT backend system.

Data
The recommendation is to have real data for testing and validation of the
functionality. Participants of a use case, preferably with a data holder role, must
provide this data sets.These data sets must be available for testing but can also
function as inspiration during development and intermediate testing of the
functionality by a developer. Thus, it is recommended to have this data as soon as
possible available.

Testing
It is recommended to initiate the deployment of a node in ones own environment as
soon as possible. Potentially organisational and technical issues need to be
addressed before a node can be deployed in one’s own IT environment.

MASTERPLAN

CONFIGURATION AND INTEGRATION OF A NODE

Configuring and integrating a node 25032024 5

Testing is the final step before actual deployment of the use case. The focus is on
testing the configurations and the integration with IT backend systems. These are
tested in two steps:

1. Testing of the configurations – the semantic adapter and SHACL validator
for the events and queries are tested individually.

2. Lab testing - two (or more nodes, depending on the use case) must be
installed and events and links for link dereferencing need to be shared
between those nodes.

3. Live testing – this is about testing the nodes in their intended technical
environments.

	EventAPIs
	Configuration
	Data
	Testing

