

Specification of the Multimodal Visibility Service 1

Towards a distributed Infrastructure for a Multimodal
Visibility Service

Draft 10-2023

www.federatedplatforms.eu

Specification of the Multimodal Visibility Service 2

Table of Contents
Summary .. 4

1 Introduction.. 5

1.1 Objective ... 5

1.2 Background ... 5

1.3 Common pilot – multimodal supply chain visibility ... 5

1.4 Technology Independent Services.. 6

1.5 Layered set of agreements for implementation.. 6

1.6 Design choices .. 8

1.6.1 Design choices at logistics level.. 8

1.6.2 Design choices at technical level .. 9

1.7 Structure of this document.. 10

2 Stakeholders and initial setting ... 12

2.1 Stakeholders.. 12

2.2 How to specify a use case.. 12

2.3 Use case(s) and data ... 12

2.4 IATA use case ... 13

2.4.1 Data provided by ONE Record :.. 14

2.4.2 Data response from BDI Node .. 14

3 The infrastructure... 16

3.1 Setup of a multimodal visibility infrastructure... 16

3.2 Node functionality .. 18

3.3 ONE Record – BDI hackathon architecture ... 19

4 Specifications .. Fout! Bladwijzer niet gedefinieerd.

4.1 The multimodal visibility service.. 20

4.2 Linked event protocol ... 22

4.2.1 Event structure ... 22

4.2.2 Event distribution for sharing events only .. 24

4.2.3 Query formulation... 25

4.3 Event logic ... 27

4.3.1 Data structure .. 27

4.3.2 Initial state of the interaction pattern (agreed order) .. 27

Specification of the Multimodal Visibility Service 3

4.3.3 State transitions ... 30

4.3.4 Event distribution associated with event logic.. 35

4.4 Generic openAPIs.. 37

4.4.1 Linked event APIs .. 37

4.4.2 Additional APIs for event logic .. 38

4.5 Additional conditions - release .. 38

5 Value added functionality. .. 40

5.1 Itineraries... 40

5.2 Leg synchronization in a logistics chain .. 43

5.2.1 Cases for leg synchronisation ... 43

6 Development plan .. 47

6.1 Milestones ... 47

6.2 Activities for preparation of the FEDeRATED hackaton ... 48

7 Concluding remarks ... 50

Specification of the Multimodal Visibility Service 4

Summary
The objective of FEDeRATED is to realize a data sharing infrastructure meeting the vision and constructed
along the building elements of the Digital Transport and Logistics Forum (DTLF) Subgroup 2. One of these
elements is called ‘Technology Independent Services’. This document provides an example of such a TIS
called a Multimodal Visibility Service.

This service is specified according to the design principles and architecture FEDeRATED. This implies that
all relevant aspects are specified like event data structures and event logic. Since the Living Labs and
prototypes developed by these Living Labs are not yet capable to implement all functionality and there are
not yet use cases that require such a service, the following choices are made for demonstration purposes:

• Event sharing – only visibility events and queries for additional data are shared. Thus, event logic
and the value added functionality will not be demonstrated.

• eFTI demonstration – one of the main aspects for demonstration will be an eFTI infrastructure, both
for B2B and B2G. This will not be complete but demonstrate how eFTI can be implemented.

• Additional use cases – there are at least two use cases that will be demonstrated, namely a rail use
case (Deplide-Simple) and an air use case (IATA – Dutch Customs Administration).

The objective is to construct these use cases during a hackaton in October 2023 and demonstrate them at
the final event (November 2023). This document will be updated according to the results of these
demonstrations and based on input from (at least) the Architectural Team of FEDeRATED. A final version
will be made available in the first quarter of 2024.

Specification of the Multimodal Visibility Service 5

1 Introduction

1.1 Objective
To develop and validate the specifications for a multimodal visibility service supported by nodes
implementing the so-called index functionality of the FEDeRATED architecture as (1) a basis for
harmonizing the various Living Labs and (2) creating an infrastructure.

Such an infrastructure enables multiple use cases interconnecting the various solutions and Living Labs of
the individual stakeholders in the FEDeRATED Action. Each LL/solution may have its own, localized
interface with the infrastructure.

Relevant parts of the architecture will be applied like interaction patterns for visibility, the semantic model,
and an initial setup of the Service Registry for each participant in the common LL.

Any applicable assumption for this demonstration will be given in this document.

1.2 Background
All FEDeRATED Living Labs have developed events (with a data pull mechanism) that provides supply
chain visibility. All these events differ. They are based on what can be called a call of a transport means
like a vessel call, a position of a transport means combined with geo-fencing, arrival or departure of cargo
(trailers, containers) at a terminal (gate-in, gate-ot), or are on the level of cargo tracking for transport legs
in a chain like load and arrival for individual legs in a chain of Codognotto.

These different approaches to visibility don’t provide multimodal visibility, implying that a shipper,
consignee, or forwarder coordinating different modalities must implement different mechanisms. This will
lead to higher costs, both in processes and IT. The objective is to create a multimodal visibility service and
support its implementation by the various Living Labs, thus creating an infrastructure.

The FEDeRATED architecture is the basis for developing a data sharing infrastructure in supply and
logistics. This encompasses the semantic model, the Service Registry, the Index functionality, and
Identif ication, Authentication, and Authorisation (IAA). These technical specifications must provide input to
the four building blocks specified by DTLF SG2: plug and play, technical independent services,
architecture, and safe, secure, and trusted data sharing.

In this case, the specification and the validation will show how plug and play can be deployed for multimodal
visibility services where these services are the technical independent services. In this case, plug and play
implies that each stakeholder will implement its relevant visibility services and integrate these with the
generic multimodal visibility service. Technical independent means that the multimodal visibility service is
specified independent of its deployment. It can be deployed by for instance openAPIs (API – Application
Programming Interface) and semantic technology (RDF – Resource Description Framework).

1.3 Common pilot – multimodal supply chain visibility
FEDeRATED constitutes various Living Labs, each with its own stakeholders, business -, and use case(s).
Some of these LLs already (have the intention to) collaborate. The objective of the common pilot is (1) to
harmonize functionality of individual pilots and (2) to create an infrastructure for interoperability between
the various LLs and their supporting platforms or solutions.

With some exceptions, the Living Labs develop a visibility solution. It is about Estimated - (ETA) and Actual
Times of Arrival (ATA), and positions as a basis for ETA calculation. It is also about loading – and discharge

Specification of the Multimodal Visibility Service 6

with their estimated – and actual times. For larger hubs like ports, it is about berthing, piloting, and towing
as business services provided by a Port Authority that are in some cases mandatory.

Thus, visibility for different modalties (multimodal supply chain visibility) is taken as a common denominator
since many of the existing use cases somehow address this service and it’s addressed as one of the
services in the FEDeRATED application form part D (technical and financial information).

This document contains the specifications of a multimodal visibility service. The first version of this
document will be validated in practice, after which the specifications will be improved and can be
implemented by various stakeholders.

To properly validate the service, it will be deployed using a so-called FEDeRATED node. After validation
and completion of the specification with input of the validation, it is up to each stakeholder to implement
and deploy the service using its own implementation. Use of the FEDeRATED node is not mandatory.

Since each user may have its own, localized interface to a node, i.e. its own APIs, the infrastructure will
not work for all users when removing ‘nodes’ since APIs will not match. Additional effort will be required.

1.4 Technology Independent Services
One of the objectives of FEDeRATED is to provide input to the so-called Technology Independent Services.
These services will support data sharing in transactional – and framework contract relations. They consist
for instance of booking -, transport -, and visibility services for multimodal business activities in supply and
logistics. This specification will show how such a Technology Independent Service is specified, namely a
multimodal visibility service for transport. Other Technology Independent Services are a transport booking
– and a transport ordering service.

Each Technology Independent Service is represented by an interaction pattern for a business activity. An
as such, each Technology Independent Service can be supported by for instance a set of openAPIs,
SHACLs used for validating sharing triples, and messages (data push). The various interactions of these
Technology Independent Services can also be mapped to existing standards that function as data carriers.
Thus, they provide so-called standards implementation guides.

Technology Independent Services can also be developed to support data sharing requirements in a
community or to support a regulation. The Service Registry supports the design of these Technology
Independent Services by implementing the data sharing ontology (see the note on ‘Semantics’).

1.5 Layered set of agreements for implementation
The objective is to specify a set of agreements providing seamless interoperability for business
collaboration and compliance to regulations, the so-called protocol stack. The upper layers of this protocol
stack specify the Linked Event Protocol and the Business Collaboration Protocol (next f igure)

Specification of the Multimodal Visibility Service 7

Figure 1: Protocol stack

Whereas in the common Living Lab for the multimodal visibility service some choices are made on the
presentation layer and lower levels, the upper two layers can be implemented separately:

• Sharing events – this is implementing the Linked Event Protocol only. Visibility events are shared
and can be validated on their content and structure according to SHACL documents only.

• Event logic – the sequencing of events is validated by the event logic specified in this document.

We will distinguish five use cases for event processing by individual stakeholders, namely:

1. Transaction progress: informing a customer on the start, relevant changes, and the finalization
of a particular transport order.

2. Authorities: re-use of relevant transport data for its particular governance role (piggy backing)
3. Physical operation: the physical operation generates events, either manual or via sensors. These are

input to the previous use cases.
4. Leg synchronisation: the synchronization of adjacent legs in a transport chain that do not have a

transactional relation but stakeholders of each leg share the same customer.
5. External conditions: access to status information generated by some stakeholder in a chain,

where this status information fulf ils a relevant condition for further action.

The specification is structured according to the various iterations that are supported:

1. First iteration: sharing events only. Any event logic is either implemented by an IT system of a user
or handled by a human. This implements the Linked Event Protocol. This addresses transaction
progress and informing authorities.

2. Second iteration: event logic for validating event sequencing and completeness and correctness
of performing a transport operation in line with an order. This is about synchronisation of transport
legs and checking if all cargo is transported. It implements the business collaboration protocol.

3. Third iteration: itinerary based event generation. Actual load and unload activities are performed
by humans and/or machines. These can enter or generate the associated events that are a basis
for informing customers and/or adjacent legs in a transport chain. It requires sharing state
information.

4. Third iteration: (semi-)automatic event generation. Implementation of a smart event distribution
mechanism where incoming events are used to generate new events. This iteration is not yet
specified in this document, but can be of value where an ETA update of a transport means is used
to inform customers of the ETA of their cargo carried by that transport means.

The common Living Lab will (only) support the first iteration. It is up to participants (and others) whether

Specification of the Multimodal Visibility Service 8

and how they will implement the other iterations.

1.6 Design choices
Although the proposal is independent of a modality and cargo type, its current focus will be mainly on road
transport, crossing borders between Member States and EU borders (e.g. transport to the UK). Additional
features for other modalities are included and will be realized during the IATA Hackaton in June 2023 (see
section 7 of this document).

Of course, this version of the service also needs to be upgraded to reflect real-life situations.

1.6.1 Design choices at logistics level

The multimodal visibility service specified in this document is restricted by its functionality to support
logistics processes. It can be completed with the following aspects at a later stage:

• Modality specifics – each modality will have its own way of operation, leading to potentially
additional interface specifications. This additional specification may have to be supported by
additional APIs or extensions to existing APIs for a modality.

• Cargo specifics – each cargo type will have additional requirements as to stakeholders involved
and thus data sharing aspects. Additional APIs will have to be generated to support these
requirements.

• Dangerous cargo – dangerous cargo will have its own data requirements, potentially also different
per modality (e.g. (deep)sea, road, and inland waterways have the same classification, air and rail
have different ones).

• Localization – each location (e.g. sea-, air- and inland port) may have its own data requirements
that differ. For instance, seaports have port authorities and processes with piloting and tugging.
Furthermore, localization can also be on the country level with different authorities governing
specific regulation.

• Business activity – the current focus is on ‘transport’. A multimodal visibility service for transport is
supported. Since synchronization with other business activities like transshipment and
storage/production is required, these business activities can be included later.

The previous implies for instance that dangerous cargo, bulk (dry or liquid like chemicals), and reefer
transport are out of scope and can be included at a later stage. This will mainly affect data sets that can
be retrieved and operations that are required.

These specifics can gradually be developed and made available as configurations. It also requires the
support of interaction patterns for transshipment, that may differ from those of transport.

Any extensions may also require the review of event distribution rules, resulting in change and/or new
rules.

It is also feasible to implement event distribution rules that (semi-)automatically distribute events received
from one node to one or more other nodes. This supports truck drivers of a carrier to report their status
change (load, discharge) to that carrier, update the state to a customer, and share state data with a CA. A
consigner acting as customer of a carrier may (semi-)automatically report the progress of a consignment
to its customer(s), the consignee(s).

Specification of the Multimodal Visibility Service 9

1.6.2 Design choices at technical level

The objective is to provide each organization with options for interfacing with a node. There are three
options related to the concept ‘profile’ (see the results of the IATA Frankfurt Hackaton and a note on
profiles):

• eventAPI – the node interfaces via a generic eventAPI with an internal IT system. Data validation
by the eventAPI is minimal. Data validation is based on the SHACL files referred to by a profile. It
is recommended to locally implement all openAPI calls (PUT/POST, GET).

• baseAPIs – any profile will refer to a design. This design can function as a baseAPI for interfacing
with an internal IT System. Data validation according to the design is supported by the baseAPI.
As such, data validation is generic and not specific to an organization. A profile provides additional
constraints that can be validated with SHACL.
Since an organization can have multiple roles, i.e. that of customer and service provider, it must
implement all openAPI calls (PUT/POST, GET).

• profileAPIs – each profile is implemented by its own openAPIs. These openAPIs will validate the
data. It implies that an organization will have as many openAPIs with a node as interactions
supported by its profile(s).

The functionality of the nodeAPI is depicted as follows:

The nodeAPI performs data validation as specified by its functionality. This differs per type of API given
here. The following functionality is performed ‘behind’ the nodeAPI:

• JSON enrichment – including UUIDs for concepts. In the current version, detection of duplicate
concepts (e.g. containers with their unique user IDs) is not implemented, meaning that a single
concept can have multiple UUIDs in the triple store.

• Semantic adapter – transforming JSON data to RDF with an RML (Rule Markup Language)
document generated by the prototype tool.

• Data validation – validating the RDF input data with a SHACL file generated by the tool. The data
validation functionality is a SHACL validator.

• Event logic – validating the event sequencing based on events that are already stored in the triple
store. This is not yet implemented but will be specified in this document for multimodal visibility.

• Event distribution – distribution of an event to the proper destination. Event distribution is based on

Specification of the Multimodal Visibility Service 10

rules related on a commercial relation (customer-service provider) and compliance to regulations.

In the current implementation of the node, events are stored in the triple store by the data sharing
mechanism provided by Corda.

In case of profileAPIs, all data validation is part of the openAPI code and no additional SHACL validation
is required. ProfileAPIs are not yet supported. They require extension of functionality of the prototype tool
used to generate these openAPIs. In case of the eventAPI or baseAPI, SHACL validation is required for a
particular organization to implement its profile. In case the node does not yet support organization specific
APIs, the baseAPI reflects the functionality specified in this document and could be implemented.

The eventAPI reflects the so-called Linked Event Protocol. Such a generic API can be used to share and
access events that have been received or send by a node. In addition to this protocol, the initial state of an
interaction pattern must be configured by a node for implementing event distribution. This is required since
the multimodal visibility service assumes the existence of a transport order common to a customer and
service provider.

Since the eventAPI can be used to share all types of events, a consumer of that API must know what data
to put in. Normally, this is specified by an openAPI. However in a generic event openAPI, this is not clear
and can only be validated by SHACL.

In an organizational network where each participant publishes its (localized) openAPIs, a specific set of
openAPIs would lead to a large set of those APIs. However, the openAPIs are only specific to a single user
for its interface with the node. Thus, each organization will have their own specific openAPIs and is not
aware of those that are required by others.

There are two additional options for interfacing with a node, namely:

• Triple endpoint. A user can upload triples to the node. These triples are validated by SHACL, that
are known to a user. In this case, the semantic adapter is not required.

• SPARQL endpoint. A user of a node can of course also select the implementation of a single,
generic semantic (SPARQL) endpoint, in which case also the various SHACLs (design and
configuration) would be used for data validation. It implies that the function of each event primitive
in an interaction pattern is part of the (RDF) data shared across this endpoint.

The current version of a node supports a SPARQL endpoint, but only for accessing and storing data in its
local triple store. This endpoint cannot be used to share data between two nodes.

In case of a transactional relation, all applicable Technical Independent Services will be implemented,
starting at an initial state for a business activity. In case of a framework contract, details of the framework
contract could function as the initial state of a node.

1.7 Structure of this document
This document elaborates the setup and interfaces of the common LL:

- Overview of relevant stakeholders
- The infrastructure - system setup
- Specification of multimodal visibility service and its APIs
- Value added functionality
- Support of organizations
- Development plan

Specification of the Multimodal Visibility Service 11

The current version of this document shows the integration of IATA OneRecord with the infrastructure of
nodes. Future versions may include integration of others in the infrastructure.

Specification of the Multimodal Visibility Service 12

2 Stakeholders and initial setting
This section provides details of the participants and use cases in the common pilot for validating the
specifications of the multimodal visibility

2.1 Stakeholders
The following stakeholders are involved in the common LL:

• Italy – Condognotto and TSG/Grimaldi. TSG/Grimaldi have their own SPARQL endpoint.
• Spain – Ministry (Simple)
• Finland – Vediafi, Ahola
• Sweden – RISE (Deplide)
• Netherlands – Ministry of I&W (BDI)
• 51Biz – OneApp for accessing data by authorities
• IATA – integrating OneRecord with a hinterland modality with a gateway developed during the IATA

hackaton (June 2023, see this document).

These stakeholders can (jointly) develop their use case(s).

Each stakeholder may choose to participate in the validation. Since not all stakeholders have implemented
semantic technology (yet), they will integrate with a FEDeRATED node using openAPIs.

2.2 How to specify a use case
Like said, a use case constitutes at least two participants. The following steps must be taken for specifying
a use case:

• Stakeholders and their roles. The logistics roles (like consignor, consignee, carrier) and business
roles (these are customer and service provider) are assigned to each enterprise. In case of an
authority, this will have the role of Competent Authority (CA). It may result in complex patterns
involving more than two stakeholders with their logistics – and business roles. These complex
situations are visualized as transaction trees reflecting the business and authority hierarchy.

• Sequence diagrams for business collaboration and compliance. Visualization of data flows
between the business roles and with CAs. Each business role and CA is reflect by a vertical line.
These sequence diagrams are independent of any platform.

• Business data storage. Identifying where the data is stored that is the basis for data retrieval. This
might be a platform like an eFTI platform.

• Technical sequence diagram. This sequence diagram is required in case a platform is used for
data storage. The sequence diagram will visualize how the data flows of each stakeholder with
others and/or the platform.

The basis assumption is that each participant in a use case will either integrate with a platform or solution
of the stakeholders in this so-called common Living Lab or have the availability of a node as will be
mentioned hereafter.

2.3 Use case(s) and data
The infrastructure will be able to support many use cases, where each stakeholder will be able to select its

Specification of the Multimodal Visibility Service 13

use case of value and thus its required APIs. A use case requires at least the participation of two
organizations, either two enterprises or an enterprise and an authority. If a use case has a single
participant, at least another participant must be simulated for a demonstration.

Data is only shared between the nodes of a participant in a use case and thus not externally visible. All
data may be presented as part of a demonstration of the infrastructure. Preferably data that is shared
reflects actual cargo flows; if this data is not available in a use case, the stakeholder of that use case must
present artif icial data as much as possible reflecting cargo flows.

It is recommended that any two pairs of stakeholders participating in the common pilot provide thier use
case. The next pages present the use case for IATA with Dutch Customs. There are other documents
specifying for instance a Codognotto - and a customs-Singapore use case.

2.4 IATA use case
One of the potential use cases is that of the airlines providing details to Dutch Customs for arrival of flights.
Since the airlines implement openAPIs based on OneRecord, these will be transformed into openAPIs
fitting the FEDeRATED architecture. The transformation will be developed as validation by IATA and will
illustrate how each airline may interact with an EU customs authority in the future.

In this case, there is a data sharing scenario between an airline's ONE Record server and the Netherlands
Customs Authority's BDI node. The purpose is to enable faster and more accurate decision-making and
targeting for shipment approval and transportation. By implementing certain checks and measures, the
customs authority aims to enhance security, prevent illegal activities, and optimize the approval process
for shipments.

The proposed data exchange is shown hereafter (it still needs to be mapped to the specifications given in
this document, section 4).

Specification of the Multimodal Visibility Service 14

Figure 2: sequence diagram for interaction between IATA OneRecord and a FEDeRATED node

Explanation:

1. The ONE Record server sends the planned arrival data (flight details) to the BDI node.
2. The BDI node receives the planned arrival data from the ONE Record server.
3. The BDI node requests the air waybill(s) from the ONE Record server.
4. The ONE Record server sends the air waybill(s) to the BDI node.
5. The BDI node performs checks and assessments on the received air waybill(s) and other relevant

information.
6. The BDI node sends the approval result (e.g., "OK") to the ONE Record server.
7. The ONE Record server receives the approval result from the BDI node.

2.4.1 Data provided by ONE Record :

1. Planned Arrival Data: The ONE Record server sends information about the planned arrival of a
flight to the BDI node. This includes details such as the scheduled arrival time, flight number, origin,
and any other relevant flight information.

2. Actual Arrival Data: Once the flight arrives, the ONE Record server also sends the actual arrival
data to the BDI node. This includes the actual arrival time, any deviations from the planned
schedule, and other pertinent information about the flight's arrival status.

3. Air Waybill: Upon request from the BDI node, the ONE Record server provides a copy of the air
waybill associated with the shipment arriving on the flight. The air waybill contains crucial
information about the shipment, including details about the goods being transported, shipper
information, consignee information, and other relevant documentation related to the shipment.

The Planned and Actual Arrival data & time are pushed by the ONE Record server to the BDI node. In
ONE Record these would be pubsub notifications. For BDI these are probably an Event POST on the BDI
REST API.

2.4.2 Data response from BDI Node

In this scenario, the BDI server sends the following information to the ONE Record server:

1. Approval Result: After performing checks and assessments on the received air waybill and other
relevant information, the BDI node generates an approval result. This result indicates whether the
shipment is approved for further processing or if any issues or discrepancies have been found. The
approval result can be communicated as a status message, such as "OK" indicating approval or
any other relevant status code or message.

2. Status Updates: In addition to the approval result, the BDI node may also send status updates or
notif ications to the ONE Record server. These updates can include information about the progress
of the customs clearance process, any additional requirements or actions needed from the airline,
or any relevant updates regarding the shipment's status.

By sending this information back to the ONE Record server, the BDI node ensures that the airline is
informed of the approval status and any necessary actions or updates related to the customs clearance
process.

These approval results and status updates should normally be events that are hosted by the BDI node.
When there is an update to the results and/or status, BDI will POST a message to a /notif ications endpoint
at ONE Record endpoint.

Specification of the Multimodal Visibility Service 15

Specification of the Multimodal Visibility Service 16

3 The infrastructure
This section elaborates the setup of the infrastructure, whereby a FEDeRATED node implements the Index
functionality required for the multimodal visibility service and provides openAPIs that can be localized.
Local APIs based on a common specification will be explained later in this document; these support plug
and play.

3.1 Setup of a multimodal visibility infrastructure
The setup of the multimodal visibility infrastructure can support various use cases based on a common
infrastructure with a set of openAPIs. There are two types of use cases supported by this infrastructure,
namely business-to-business (B2B) visibility, and business-to-administration (B2A) governance (either
voluntarily or based on a regulation like eFTI). Each B2B use case consists at least of two enterprises and
potentially an authority for B2A. These use cases are preferably with potential users of the infrastructure;
if not available these may be simulated.

Each participant in the common pilot will have the same capabilities, namely act as service provider,
customer, and authority. Some participants may have limited capabilities, like only supporting an authority.

Each stakeholder must integrate with a so-called (FEDeRATED) node. Basically these nodes run in a
single cloud environment (dockerized) for demonstration purposes, meaning that each stakeholder will
have its own node. A stakeholder may also decide to implement a node in its own (cloud) environment.
TNO provides the nodes for each stakeholder in TNO’s cloud environment.

Figure 3: setup of the infrastructure

Specification of the Multimodal Visibility Service 17

This infrastructure creates a federated network of platforms1 implementing the visibility pattern between a
customer and service provider, including access by a competent authority. The previous figure shows that
TNO will at least install six nodes in its cloud environment. Eventually, the number of nodes can be
extended or the network can be reconfigured. The figure also shows two stakeholders that directly interface
with a peer node, e.g. TSG endpoint serving Terminal San Giorgio and Grimaldi and the IATA bridge
interfacing with OneRecord (see before). These stakeholders will be trusted during the pilot, but are not
registered by the proprietary Registration Authority.

The FEDeRATED Architecture and its support team acts as Design Authority. It will provide the
specifications for each node. As of currently, TSG and IATA may take these specifications also and
implement the functionality in their way. The Corda Network Manager acts as Registration Authority; it
might be replaced with a Registration Authority issuing VCs (Verif iable Credentials), eventually.

Each stakeholder and user of platform or community can have its own set of APIs for its node (see later in
this document).

In case a user has a SPARQL endpoint, the event data and queries are shared across this endpoint with
the endpoint of a node. That node functions on behalf of that user in the common cloud environment. This
is required since the current implementation of a node is based on Corda, which is a (freeware) COTS
solution (COTS – Commercial Of The Shelve). Corda and a node have an openAPI interface and
additionally Corda provides a so-called network manager and supports non-repudiation (data integrity and
audit trail). The Corda network manager, however, is not able to recognize a non-Corda SPARQL endpoint
as part of the network.

In case a participant in the common LL does not have a user (enterprise or authority) the participant must
simulate one or more users, where these users can have a role of customer and service providers. Other
participants act as user (Codognotto, Ahola, and OneApp) and yet others may decide to use existing users
of their platform to share data in a demonstration setting of the common LL.

The objective of the common LL is to demonstrate one or more (fictive) use cases. Any implementation
choices for operational use by stakeholders may change. For instance, each participant may choose to
implement ‘node’ functionality itself.

1 Other terminology for such an infrastructure is ‘Mobility Data Space’. Furthermore, the infrastructure will supported what has
been introduced by Dutch Customs Administration and HMRC as ‘data pipeline’.

Specification of the Multimodal Visibility Service 18

Figure 4: FEDeRATED node functionality

3.2 Node functionality
The node that will be provided as Docker/Kubernetes container via github by the Netherlands has the
following functionality (development based on the current version 0.2 yet to be done, see previous figure):

• Local openAPIs with a platform or IT solution of a participant. There are two types of interfaces:
o Webhook API for pushing events to a node.
o REST/openAPI for data retrieval of a query. The query is based on events with links shared

between various stakeholders.
These openAPIs are provided as separate Docker containers and need to be assembled with the
Docker installation of the BDI node. OpenAPIs can be made specific to an organization or platform
integrating with that node (see section 1).

• Node. Generic functionality that is independent of any use case. It comprises Corda and a graph
database (graphDB) implementing the semantic model. The node is available as Docker container
with generic openAPIs for sharing and storing data with other nodes.

o Interfaces between nodes. These are based on the current implementation of Corda by
the prototype v.02 of the BDI node. Corda provides a registration mechanism (Corda
Network Manager) and safe, secure, and reliable data sharing via AMQP and TLS.

o Data sharing between nodes. All data is shared a triples (RDF) and SPARQL between
nodes over Corda.

• Event processing. The capability of a node to receive (JSON) event data, transform it to RDF
(semantic adapter), share it with the proper other node(s) (event distribution), and store what has
been shared (triple store. This functionality is part of the Docker container with the openAPI code.

• Query processing. The capability of a node to validate that another node has also received a link
and is allowed to receive a response to a query. The response will be retrieved via a single REST
API from a user’s system (API mapping). The semantic adapter will forward the response in RDF
to the requesting node/user.

Two components need further configuration to support the visibility pattern, namely the semantic adapter
(events, query response) and event distribution.

Specification of the Multimodal Visibility Service 19

3.3 ONE Record – BDI hackathon architecture
During hackathon IATA will deploy the proposed architecture as below:

Figure 5: Integrating IATA OneRecord servers with a FEDeRATED node

There are currently no rules for subscription to flights and their ETA. These are considered as open data,
enabling everyone to subscribe to the flights at airports (departure, arrival) they require. An authority will
not make a subscription, this must be configured by an airline for each flight with cargo.

Specification of the Multimodal Visibility Service 20

4 Multimodal visibility service specification
This section provides the specification of the multimodal visibility service. The specification is technology
independent; tools will be applied to make technology specific deployment, for instance dockerization and
generation of openAPI code from ontologies.

The specification is organized according to the layered set of agreements. First, the visibility pattern is
given identifying its functional states and event primitives. Secondly, the event structure is specified
supporting the Linked Event Protocol and validation of structure and content of events with SHACL. It
identif ies an event distribution mechanism where in a commercial setting the intended recipient is included
by a sender and geographical coverage is used for compliance. This section also defines the openAPIs to
support the sharing of events. Thirdly, the event logic is specified, based on the service specification. It
includes event distribution based on the existence of an order between two commercial parties. This order
information is entered as initial state. Event distribution for compliance is not affected by event logic.

There are still design issues with respect to the events and supporting APIs as given in the introduction.

Since the output of the specification is taken as input for localization (next section), all specifications of
states, events, and queries/results will be generated as SHACL documents using existing tools. These
SHACL documents are constraints to the FEDeRATED semantic model. The interaction pattern of states,
events, and state transitions is an instance of the FEDeRATED data sharing ontology (see the note on the
semantic model). These instances and SHACL documents are available for localization.

4.1 The multimodal visibility service.
This section presents the interaction pattern of the multimodal visibility service for transport. It is used to
identify the various events that can be shared and their sequencing, where the latter is the input for event
logic.

This interaction pattern is per order between a customer and a service provider. Any events shared for
individual orders can be triggered by an operation at the level of a transport means. This is especially the
case for ‘ETA –‘ and ‘position events’ where the ETA and position of all cargo carried by a transport means
is updated. This is not (yet) part of this specification.

The visibility interaction pattern (next figure) consists of activities by which events can shared between a
customer and service provider, where these events can also be shared with an authority. For instance, a
service provider submits a load event to its customer, followed by an ETA event. The following events are
supported: load event, ETA event, Incident event, and Unload event. Their allowed sequencing is given in
the following diagram, where circles represent a state (states: agreed order, in execution, completed, to be
cancelled), rectangles represent data sharing processes (processes; start, ETA update, Position update,
Incident/accident, complete), and envelopes with an arrow the initiation of an event by one of the roles (the
blank role like ‘LSP’ for ‘start’ process) and the other the recipient (the grey role like ‘customer’ for the start
process).

Specification of the Multimodal Visibility Service 21

Figure 6: interaction pattern of the multimodal visibility service (specified as BPMn 2.0 choreography)

The most basic example of interactions between a customer and LSP are by sharing a load event, followed
by an ETA event, and completed with an unload event.

One of the processes of the pattern shown by the previous f igure requires decomposition, namely the
process ‘incident/accident’. The start and estimated end of an accident or incident can be provided by an
event, whereas the end time can also be given by a separate event (see the description of the events).
This is not yet done and will have impact on the event logic. However, a start or end of an accident or
incident may not always be shared since a human may not be capable to do this. A loss or damage can
be reported by a single incident event.

The service specification shows that cargo can be unloaded in steps. This is by introducing the state
‘partially unloaded’. The incoming load event is processed by the appropriate transition when of the pre-
condition of that transition is met. Thus, whenever an unload event is received, the pre-condition of both
events is validated to decide on its result. Of course, partial unload can be related to a partial load, for
instance transport of cargo with multiple trucks or trailers from between two locations. Whereas a partial
unload is visualized in the choreography, the partial unload is not shown but can easily be included (leading
to an extra state transition).

The states represented in the interaction pattern relate to ‘transport’ as the movement of cargo between
two locations. These locations have different names for different modalities:

• (Deep)sea. The locations are Port of Loading (POL) and Port of Discharge (POD). This visibility
pattern refers to loading, departure, arrival, and discharge of cargo in these ports, where the events
refer to the port area. Each port will have more detailed events referring to business services of
third parties (on behalf of a port authority) taking place in those port areas, e.g. tugging and piloting.

• Air. The locations are the airport of departure and the transit or destination airport of a flight. A flight
is comparable with a voyage of a vessel, a trip of a truck or a path of a train. A flight has a slot at
an airport; f lights are managed and coordinated by air traffic control.

• Road. The locations are the Place of Acceptance (PLA, the place where the cargo is taken over by

LSP

customer

Visibility

LSP

customer

Start

Order completed

order

Load event

Load event

LSP

customer

ETA update

LSP

customer

Complete

ETA event Unload event

LSP

customer

Position update

Position event

ETA event Unload eventPosition event

LSP

customer

Incident/
accident Cancellation

Incident event

Incident event

Agreed order

Completed

To be cancelled

In execution

LSP

customer

Partial unload

Specification of the Multimodal Visibility Service 22

a carrier) and the Place of Delivery (PLD, the place where the cargo is handed over by the carrier).
• Rail. These are the stations where the cargo is loaded onto or in a railway wagon and the station

where it is handed over. A railway wagon is part of a train that has a path on the (inter)national
railway infrastructure. National paths are assigned by a national Infrastructure Manager; EU paths
are assigned via Railnet Europe in coordination with national Infrastructure Managers.

The next pages specify the events with an event distribution mechanism, potential queries, and event logic.

All data sets will be expressed as SHACL constraints to the semantic model and configure the semantic
adapter.

4.2 Linked event protocol
This section specifies the events that implement the Linked Event Protocol (see section 1.5). It is only
about validation of the event structure and content. There is no validation related to state information. All
events that are shared (received or submitted) by a node are stored in its index (i.e. the triple store of that
node).

4.2.1 Event structure

Conceptually, each event of the multimodal visibility service has the following structure:

Figure 1 conceptual structure of visibility events

The figure shows that an event represents an association of Digital Twins (at least one ‘Goods’ or container
and a transport means) at a location with a role. The role can be Place of Acceptance (PLA), Port of
Loading (POL), or any other relevant to the visibility service. An event is of a type, where the type refers to
its function in the choreography. Types are for instance ‘loading’, ‘unloading’, and ‘position’. A type has a
specific value of ‘milestone’ for creating (start) and ending (end) an association. Visibility events will always
have the time ‘estimated’ (ETA event) or ‘actual’ ((un)loading, position) and are send by an enterprise in
its role of ‘service provider’.

Specification of the Multimodal Visibility Service 23

This results in the following structure for visibility events that will be expressed by the ontology:

An incident (or accident) is represented by three events, namely the actual start, the estimated end, and
the actual end. These events can be shared separately; they are applied to calculate the delay caused by
any of these events. They can be shared with at least two events: the first (milestone = start) indicates the
time at which an accident or incident occurs with the estimated end and the second (milestone = end) the
actual completion. Note that accidents or incidents cannot always be generated, since a human may not
be capable to signal such an event. Any delays caused by a traffic jam have impact on an ETA and can
be reported as such.

As the previous table shows, an incident event may give loss or damage to cargo, i.e. goods or equipment.
This should be indicated when detected. There can be different types of incidents like damage, loss or theft
of cargo. Accident are also processed as incidents; they might only result in delays.

The previous table shows that f ive types of transport means can be given, one per transport mode. Thus,
the transport modality indicates the type of transport means. The identif ication of a transport means is
assigned by an authority, that may be a national authority in for instance the case of license plates of
trucks. In case of an airplane, it is recommended to use the flight number as identif ication; a flight number
indicates the movement via air from one airport to another using an airplane. This is not correct but will do
for the moment.

The table shows that three subtypes of equipment can be used, namely containers, trailers, and (railway)
wagons. Any additional subtypes could be included. Goods are identif ied via the types of packages: all
packages of the same type are grouped. Either equipment or goods are given as cargo. In case of
equipment, the different subtypes of equipment can be provided.

In case the event does not have a reference to cargo (goods or equipment), the visibility event is applicable
to a transport means. It may for instance give the ETA of a transport means for arrival at a location (note
that

A load event may have a reference to a document data set (optional), which can be the customer order

Specification of the Multimodal Visibility Service 24

reference. The document data set differs per modality. Road for instance uses a CMR data set, air the Air
Way Bill (AWB) and sea the Bill of Lading (B/L). Such a reference may also be considered a reference to
a customer order:

• For a customer -service provider business relation, the transport order can be applied.
• An authority also does not require this reference, since it can search on other criteria like ‘transport

means ID’ (license plate of a truck, vessel code, etc.) and equipment identif ication (container
number, license plate of a trailer, wagon number, etc.).

A CA will at least receive load and discharge events.

4.2.2 Event distribution for sharing events only

As the visibility pattern shows, all events are shared by an LSP (Logistics Service Provider, referred to as
‘service provider’ hereafter) to a customer, whereas some events are also shared with a competent
authority (see Interface specifications). Both enterprises and competent authorities may access data based
on links they have received.

At the level of the Linked Event Protocol, the recipient in its role of customer must be provided by the
sender in its role of service provider. The Index of a node (i.e. the triple store of a node) only stores all
events shared with other nodes (received and submitted).

Events shared between two enterprises can be duplicated for compliance reasons and shared with one (or
more) Competent Authority/-ies (CA). By sharing events with CAs, those CAs can access data via the links
that are shared. To select the data they require, they may want to use a reference number that they have
retrieved otherwise, for instance a license plate of a truck retrieved via Automated Number Plate
Recognition (ANR).

The event distribution mechanism is as follows:

• B2B – the sender/recipient combination must be given by the sender of an event. This is used to
map to an identif ication for actual data exchange. At the level of event logic this mechanism is
different (see later).

• B2A – a CA will receive all visibility events of cargo that passes and is loaded and/or unloaded in
its competency domain. The following rules are implemented by event distribution for the visibility
events, they can also be applied to the agreed order giving already an indication to an authority of
planned logistics movements to its domain:

o If extract(event(visibility)_PLA (Place of Acceptance), country_code) equals
CA_country_code CA will receive a load event.

o If extract(event(visibility)_PLD (Place of Delivery), country_code) equals CA_country_code
 CA will receive a load (also if PLA is not in its territory) and a unload event.

o If extract(event(visibility)_position, country_code) equals CA_country_code (border
crossing positions), CA will receive the position event. The CA needs to extrat whether
this is an exit or entry of its domain based on the route (outside scope).

Assumptions:

1. Competent Authorities – these will always receive load/unload events as specified by the event
distribution for demonstration purposes, independent of any regulation.

2. CA territory – for demonstration purposes, the territory is a country. The country code is part of
the UNLOCODE of PLA/PLD.

Specification of the Multimodal Visibility Service 25

The B2A mechanism can be refined at a later stage, for instance by preventing that a CA can only access
data of the load of a transport means when it is in its territory and not elsewhere. This includes details of
an itinerary.

4.2.3 Query formulation

The UUIDs of events and their referenced transport means, equipment, and goods are the basis for
retrieving more information, both by enterprises and Competent Authorities (CAs). Each enterprise or CA
can formulate its own queries or re-use standardized queries where the output of these queries may be
different for an enterprise and a CA. Examples of those queries are:

• Retrieve general information – based on the UUID of a load event, the order or document data
set is retrieved.

• Retrieve detailed information – based on the UUID of a visibility event that is retrieved via for
instance the UUID of a transport means or equipment, an enterprise or CA may want to receive
details of the cargo of, including its agreed order (consignment data). For an enterprise this might
be for instance the weight of a container; for a CA this could be a container track.

• Retrieve specific information of a Digital Twin – the UUID event of load/discharge must contain
the UUIDs of the relevant Digital Twins, since the user defined identif ier (e.g. license plate of a
truck or trailer, container number) are used to by a data user like a CA for remote monitoring. The
specific information may contain details of the goods or content of a trailer/container, which is
specified by the query formulated by that CA, where this goods details may only be available to a
consignor and not a carrier.

In this first version, the two basic queries are:

• Business document data set query for enterprises. The query is on the UUID of the event (state
data) and retrieves all data representing a business document.

• eFTI data – and AWB query for CAs. This is a query for authorities with a subset of the eFTI data
set as specified within the eFTI Regulation and the AWB data specified by OneRecord.

The following table lists an example of these queries. This example is not complete and does not reflect
the actual situation like the eFTI, AWB, or any other data set. It serves as a basis for demonstration.

Specification of the Multimodal Visibility Service 26

Specification of the Multimodal Visibility Service 27

4.3 Event logic
The event logic is part of the state transitions, where each state transition is triggered by an event primitive.
The ‘agreed order’ state data must be initially shared between a customer and service provider to trigger
sharing events. This ‘agreed order’ is the basis of a document data set (like the eCMR) that can be
produced at state ‘in execution’.

4.3.1 Data structure

The data structure of the states and interactions (events) is specified by a prototype tool. Therefore, the
data structure is flexible. However, for event logic, a data structure must be known, which imposes rules
for specifying states and events.

The following data structure is required for event logic:

Figure 2 conceptual structure of states

The figure shows two types of events, namely a state – and visibility event. The visibility events have been
specified. The state event is similar to the visibility event, but contains at least two visibility events for a
‘transport’ activity, namely the load and unload event. This is an extra constraint to the visibility events.

Furthermore, a visibility event represents the associations between Digital Twins (in place and time) related
to a state event. This relation is given by the fact that Digital Twins of visibility events completely overlap
or are a subset of those given by a state event and the sender/recipient associations of visibility events
equals the customer/service provider associations of state event as specified by the choreography.

4.3.2 Initial state of the interaction pattern (agreed order)

The ‘agreed order’ state contains the following data set (functional expressed by the semantic model):

This state contains data reflecting a customer order (this table must be updated for multimodal transport;
recipient must also still be included):

- General event data (event (state data) reflecting header data. This refers to cargo (goods or
equipment), organizations involved (consignor, carrier, consignee), and a transport modality and/or
means.

- Associations are via UUIDs (Universal Unique Identif iers)
- Each concept (organization, location, etc.) has a user interpretable identifier like an equipment id.
- Equipment is generic, in the sense that reflects a trailer, container, or any other type of equipment.
- Actual details of the movement of goods or equipment are given by two visibility events, one with

the Place of Acceptance (PLA) and the other with the Place of Delivery (PLD).

Specification of the Multimodal Visibility Service 28

- If required, any intermediate location can be included, for instance that of border crossing for cargo
going into or moving out of the EU.

- Any queries on individual concepts (like Digital Twin – goods) will only result in those data properties
given for these concepts.

Specification of the Multimodal Visibility Service 29

Specification of the Multimodal Visibility Service 30

4.3.3 State transitions

All event primitives that are shared as part of the multimodal visibility service update visibility details of all
cargo known by state data. This allows for instance to share an ETA event for all cargo, but also to share
a loss of single piece of cargo (an instance of Digital Twin that is cargo).

To enable this functionality, event primitive data is stored at the level of individual cargo (instance of all
Digital Twins in an order), thus enabling the overall structure of an order with its references to logistics
stakeholders. The proposed approach can be amended to handle multiple transport operations for a single
order.

All event primitives must be validated before they are processed as part of a state transition. This is a
separate function that is not given by event logic.

The way by which the state transitions are specified and event primitives can be shared, transport can be
completed for the remaining cargo after part of it might be lost or damaged. This is by including these
details at the level of a particular piece of cargo in the state ‘in execution’.

The state transitions are specified as follows (see the interaction pattern of the service)

State transition Start

Input state Agreed order Initial upload of the state must be performed for
this transition to properly execute.

A load event contains all cargo (all UUIDs
referring to goods or equipment) that have been
loaded. Missing cargo must be detected.

Event primitive Load event

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

(For all cargo in agreed_order) exists
load_event (UUID)

Load_event (PLA) equals (agreed_order
(cargo (event (PLA)))

Load_event (actual_date/time) in period
(agreed_order (cargo (event (milstone =
start; estimated)))))

First check always: is a visibility event related to
a state event for enterprise roles, second check
on Digital Twins.

Additional checks that the cargo is loaded at the
place indicated by the order and the time is
within the estimated period.

Error Error with a code identifying one of the parts
of the pre-condition that is not met:

- Order unknown
- Difference in place of acceptance
- Too late loaded (too early is

probably not relevant, since cargo
should not be available before a
planned loading time)

First error must be shared with the sender of the
event to prevent any unrequired data sharing.
The event is not shared.

The other two errors are indicated to the sender
of the event. The event is shared with the
recipient, that receives the same error at
reception of the event. The sender of the event
may recalculate the planned date and provide it
as estimate time for completion by a separate
event (potentially at a later stage).

Firing rule If too late or too early then recalculate -

Specification of the Multimodal Visibility Service 31

State transition Start

planned date

Post-condition (output state) For all cargo (event (visibility details): store
load_event

Update event (state data) with load_event
(transport means)

Optional: update event (state data) with
load_event (equipment_trailer)

The transport means given in the load event is
updated and included in the order.

If the cargo is loaded on a trailer (railway wagon
can be included lateron), the trailer is added.

This transition can be expanded to cover partial
loading of all cargo in a business transaction
(e.g. a shipment or consignment); partial
unloading is already supported.

State transition ETA update

Input state In execution There can be two different transitions, where an
initial update of an ETA for unload is updated at
a later stage.

An ETA event is applicable for all cargo given by
the state. It can be given at the level of a
transport means.

Event primitive ETA event

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

(ETA event (UUID)) equals (event (state
data) (UUID) and state ‘in execution’)

ETA event (estimated time; milestone =
end) within period (event (state data) – for
all cargo (UUID) – event (visibility details;
estimated; milestone = end))

A validation that an agreed order is in execution
and the ETA is still within the time window.

Error ‘order in the execution state unknown’

‘too late or early unload’

The first error is submitted to the sender of the
event to prevent any unrequired data sharing.

The second error is shared with the sender of
the event after which the ETA event is shared
with the recipient. At reception, the error is
shared with the recipient.

Firing rule - -

Post-condition (output state) For each cargo (event (visibility details))
with milestone = end: update (estimated
time)

In execution

Specification of the Multimodal Visibility Service 32

State transition Position update

Input state In execution It is assumed that a position is only given once
with its actual state, where the result is
‘milestone = start’ indicating the position is
passed.

This could be updated by given an estimated
time at which a position will be passed.

A position is applicable to all cargo that has
been loaded and given at the level of a transport
means.

Event primitive Position event

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

(position event (UUID)) equals (event (state
data) (UUID) and state ‘in execution’)

(position event (location) not in (all cargo for
event (state data) with event (visibility
details) (position))

There must be an order in a state of execution
and the position must not yet be given

Error ‘order in the execution state unknown’

‘position already shared’

This error is submitted to the sender of the event
to prevent any unrequired data sharing.

The sender of the event receives an error when
the position is already shared and the event is
not shared with a recipient.

Firing rule - -

Post-condition (output state) For each cargo in (event (state data))
include event (visibility details) (milestone =
start: location = position event (location)

In execution

State transition Incident/accident

Input state In execution Three types of incidents or accidents can be
reported:

- Loss of cargo
- Damage of cargo
- Delay caused by an accident

The type of incident or accident is given by a
code of the event.

Event primitive Incident or accident event (in brief ‘incident event’ is given hereafter)

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

First the order should exist and secondly for loss
or damage the cargo must be present.

Specification of the Multimodal Visibility Service 33

State transition Incident/accident

(incident event (UUID) exists in (event (state
data) (UUID; state = in execution))

Incident event (loss or damage) and
(incident event (cargo UUID)) exists in event
(state data) cargo (UUID)

Error ‘order in execution unknown’

‘cargo given for loss or damage unknown or
not loaded’

These errors are shared with the sending actor
to prevent any update with the recipient.

The second error indicates a state error. First
action is to synchronize states between two
participating stakeholders.

Firing rule If Incident event (accident) then calculate
(ETA unload; delay) and indicate error in
case ETA unload exceeds the period given
by the state

This is at the moment the single transition with
a firing rule where the impact of the delay is
calculated. This calculation may be simple by for
instance adding the delay to the estimated time
of unloading (milestone -= end) or considering
any other details that may occur after the
accident.

Post-condition (output state) Case

- Accident: for each cargo in (event
(state data)) include accident
event as event (visibility details)
(milestone = start: location =
accident event (location); accident
event (actual time)
Update the estimated time for
milestone = end of all cargo
specified by the event (state data)

- Damage or loss: for all incident
event (cargo UUID) include the
incident event to the applicable
cargo via the UUID.

In execution

State transition Partial unload

Input state In execution

Event primitive Unload event (partial)

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

((unload event (UUID equipment)) exist in
(event (state data) and (all UUID equipment;
state = in execution) or (((unload event
(UUID goods) exists in (event (state data)
(UUID goods; state = in execution)) and
((unload event (UUID goods – number of

Partial unloading is indicated via the event.

The unload must also fit in the time window of
the estimated/planned data, since it is the basis
for synchronization with adjacent legs. The
location must also equal the expected.

Specification of the Multimodal Visibility Service 34

State transition Partial unload

packages)) equal or less than (event (state
data) (each UUID goods – number of
packages)) and (for each cargo in (event
(state data) (location for visibility event with
milestone = end, expected date given)
equals (unload event (location)

Error ‘not all cargo unloaded’

‘not all packages unloaded’

‘unloading at a different location than
expected’

‘unloading too early or too late as planned’

Following type of errors:

- Not all equipment or goods are
unloaded

- Not all packages of goods are
unloaded (missing packages that are
not reported)

- Cargo is unloaded at a different
location than expected by a customer

- Unloading too early or too late. In case
of a partial unload, only the completion
will specify the final time and its
position with respect to the time
window (too late or too early).

These errors may not necessary give rise to an
action by a sender, like the unloading location
might change and has to be reported.

In case of unloading of partial shipments this is
reported via the transition ‘partial unload’

Firing rule - -

Post-condition (output state) For each cargo in event (visibility details)
include event (visibility details) (milestone =
end: location = unload event (location) in
event (visibility details)

Only those cargo will be in state ‘completed’ that
are reported. All others remain in the state ‘in
execution’

State transition Complete

Input state In execution

Event primitive Unload event (final)

Pre-condition Event (sender, recipient) exists
agreed_order (service provider, customer).

((event (state data) (all UUID equipment;
state = in execution) exist in (unload event
(UUID equipment)) or (((event (state data)
(UUID goods; state = in execution) exists in
(unload event (UUID goods)) and ((event
(state data) (each UUID goods – number of
packages) equals (unload event (UUID
goods – number of packages)) and (for each

All cargo that was loaded is reported by
unloaded by a single unload event, unless a loss
has been shared during transport with an
incident event.

The unload must also fit in the time window of
the estimated/planned data, since it is the basis
for synchronization with adjacent legs

Specification of the Multimodal Visibility Service 35

State transition Complete

cargo in (event (state data) (location for
visibility event with milestone = end,
expected date given) equals (unload event
(location)

Error ‘not all cargo unloaded’

‘not all packages unloaded’

‘unloading at a different location than
expected’

Three types of errors:

- Not all equipment or goods are
unloaded

- Not all packages of goods are
unloaded (missing packages that are
not reported)

- Cargo is unloaded at a different
location than expected by a customer

These errors may not necessary give rise to an
action by a sender, like the unloading location
might change and has to be reported.

In case of unloading of partial shipments this is
reported via the transition ‘partial unload’

Firing rule - -

Post-condition (output state) For each cargo in (event (state data))
include event (visibility details) (milestone =
end: location = unload event (location)

Completed, where any damage to particular
cargo is stored as mentioned by the event.

Any pre-condition can be implemented by SPARQL queries where event data is used to query state data.
A positive result of the query makes the pre-condition ‘true’; a negative must generate an ‘error’, where
depending on the error action is taken (see the specifications).

The pre-condition is an update to the state data with the event data. Existing events (visibility) at the level
of cargo may have to be updated or new events (visibility) must be inserted. For instance, it will be good
to keep track of any ETA updates by including them to each digital twin representing cargo.

In case any ‘ETA –‘, ‘position –‘, or ‘accident/incident event’ is shared in the context of an order after the
unload event has been processed and the state is ‘completed’, these events are discarded. In case this is
at the sender (i.e. the service provider), they are not shared with the recipient (i.e. the customer). In case
this is at the recipient (i.e. the customer), they are considered to be out of sequence and can be discarded.
Any data contained by those events could have caused a delay or damage or loss of cargo, which is
already detected when processing the unload event.

Any unload event must be preceded by a load event. If a sender still tries to share an unload event without
having shared a load event, a warning must be given and the unload event will not be shared. If a recipient
receives an unload event without having received a load event, this is an error (the unload event can only
be processed when the state is ‘in execution’, see the transitions). In case of such an error, synchronization
of state between sender and recipient might be necessary.

4.3.4 Event distribution associated with event logic

Uploading and synchronizing the initial state between two nodes that want to share events, i.e. that have
a commercial relation based on an order, serves as a means to distribute events. The sender node needs

Specification of the Multimodal Visibility Service 36

to relate an event to its state, detect the relation in the shared business transaction and use its identif ication
as recipient of an event.

This event distribution must be executed at sending an event before the event logic is executed since the
event as such will be shared with the intended recipient. This recipient in its turn executes the event logic
and updates its state.

Instead of sharing events, another solution could be to share updated state information from a sender to a
recipient, when a sender wants to share an event. It means that event logic is only executed by the sending
node and not the recipient one. This solutions of sharing updated state information would work for
multimodal visibility, since only one of the nodes will send events to another (from service provider to
customer). However, in future situations, a customer may also share events with its service provider and
update its state data at a similar time it is updated by the service provider. This may lead to out-of-sync
states. Event logic must cater for that when it occurs.

Thus, before any actual visibility events are shared, at least the node of a service provider must contain
the agreed order (see initial state specification). The agreed order with its state data and visibility events
containing the expected and estimated date/times must be stored by the index. In this case, the service
provider may also share this event with its customer, being the consignor by retrieving the customer_UUID
from the event and matching it with the Corda identif ier of the customer node.

It can also be an option that a customer enters the agreed order with visibility events as mentioned, in
which case the event is distributed to the Corda node of the service provider by matching the
service_provider_UUID from the event with its Corda node identif ier.

Similar, all other concepts like locations, organizations, and Digital Twins have UUIDs, meaning that
relevant data is only stored once in an index. If for instance multiple orders are transported by a single
truck or trailer (LTL – less than truck load), the UUID of the truck or trailer is stored only once. In this case,
each order and its visibility events is only shared by a service provider with a single customer of that order.
The operator of a transport means may provide the event to a node, which distributes it to the relevant CAs
and customer.

After this initial state information is shared, the rules for event distribution are: a customer participating in
an order will receive all relevant visibility events for that order from its service provider. These are the
events that are formulated by the visibility pattern. It implies that the existence of an order must be present
in the index (graphDB).

• The data structure of an agreed order and load/discharge events are given hereafter. The following
rules must be implemented:

o Consignor UUID is the customer; carrier UUID is the service provider.
o Consignee UUID is the receiving party that may have to be informed.
o Each event has a UUID. The UUID of a sender of any event shown in the event table is the

UUID of the carrier.
• The rule is as follows:

o If event_UUID equals agreed order_event(visibility)_UUID as stored in the index and
event_sender_UUID equals agreed order_event(state data)_carrier_UUID, then share
event with agreed orders_event(state data)_consigner_UUID.

o An extra check may be performed by comparing the UUIDs of a transport means,
equipment, and goods in as stored by the agreed order in the index.

Specification of the Multimodal Visibility Service 37

4.4 Generic openAPIs
The set of openAPIs given here is based on a generic approach supporting the Linked event protocol and
the concepts of the data sharing ontology. This is still for further research on its feasibility.

4.4.1 Linked event APIs

The following APIs will be specified as openAPIs and supported by a node (naming of the APIs will be
generated and thus differ from that given here; the specification of these APIs is for further discussion):

• Put Event – update of the agreed order state with a visibility event. There is stil a design issue
where either each type of event is support by an API or a generic API is applicable where its
meaning is based on the data carried by the event. There is event logic involved in processing
these events, as will be specified hereafter.

• Get Event – retrieval of one or more events. This is a local function of a node, whereby a user of a
node is able to retrieve one or more (visibility) events. Different options will be supported:

o Retrieval of the last event – retrieval of the last event that has been shared. This can be
restricted to an order.

o Retrieval of order events – retrieval of all visibility events that have been shared in the
context of an order.

o Retrieval of events (with a time window) – retrieval of all events in a given period, e.g. a
particular day, the last hour, etc.

o Retrieval of events shared with a particular other user – retrieval of all (visibility) events that
have been shared with a particular user.

• Get Data (user_known_identifier) – a generic API where a user known identif ier is the parameter
to search for additional data as stored by an index of a node. This can be for instance a consignment
identif ier, license plate of a truck or that of a trailer, resulting in a query on the UUID of the
event(state data). There are two variants for this query, namely that of a business document data
set for an enterprise and of an eFTI data set for a CA. This may result in two separate APIs.
A user identif ier must be known to a node and or shared with the node that requires access to the
data. The following rules are applicable:

o Data user node. Based on the user identif ier, the associated UUID with all related UUIDs
and their user defined identifiers are returned. For instance, a query can be formulated on
an consignment or eCMR identifier, returning all associated data of that eCMR in the node.
Next, the individual UUIDs can be queried to access data of a data holder, i.e. the one that
shared the events. Additional data can only be retrieved for state events that are not yet in
the completed state. Furthermore, the user identif ier of the local query must be stored in
this node. The result of the query per user identif ier is:
 User identifier of a Digital Twin – the UUID of any order of event (state data) in

which the UUID of that Digital Twin is present and that is not yet completed is
retrieved. If the user identif ier is not known or there is not an order that is open, a
message is returned to the data user. In case of the UUID of a truck or trailer, one
(FTL) or more (LTL) UUIDs of orders might be retrieved.

 User identifier of event (state data) – the user identifier must be present either at
the level of an event(state data) that is not yet completed or any other object (Digital
Twin, location, organization) for orders that are not yet completed. The result is a
query to the data holder node with the user identif ier known by the IT backend
system, where the data holder is identif ied as sender of event(state data).

Specification of the Multimodal Visibility Service 38

o Data holder node. The assumption is that this node provides (access to) additional data
stored in a backend system (federated querying will not be supported yet). A query for data
retrieval by a data user can only be answered if the UUID in that query exists in the data
holder node and is shared with the data user that poses the query. If the latter validation
rule is true, the specified openAPI to retrieve data from an API backend is initiated with the
user identif ier. OpenAPIs can be generated at different levels:
 State data – additional order data is retrieved like a transport order that is the basis

for an eCMR or another type of transport document;
 Digital Twin data – additional data at the level of individual digital twins is retrieved,

for instance a trailer (with its cargo) or a container.
 Organization – or location data – providing additional data of parties involved in a

business transaction.

4.4.2 Additional APIs for event logic

The following APIs are included to support synchronization of state information in case of any
malfunctioning, loss of events, or processing of events:

• put State – the upload of the (initial) state to a node that will be shared with another node in a use
case. The event(state data) must have a UUID that is not known by a node receiving the event(state
data).
This API can also be used to update the state as perceived by one of the stakeholders. If this is
done, this may lead to an error since the state perceived by a node might differ from the one
perceived by a user of a node. Thus, it is best to first retrieve the state of a transaction of a node
and analyze differences before a forced state change is made.

• Get State – an API operating on ones’ node only for retrieval of a state shared with another node,
including the events that are shared. A node will have a SPARQL endpoint implementing the
functionality of this API, thus providing full f lexibility of querying. However, each query result must
be processable by a human (via a GUI) or an IT system which requires predefined queries. The
following local queries are formulated (there might be more local queries than specified here like
the query on a trailer number for retrieval of its trip, as a means to implement governance of
cabotage legislation):

o Retrieval of all agreed orders that have not yet reached the final state (completed).
o Retrieval of the state of orders that is not yet completed and shared with a particular peer

node. This may retrieve all running orders of a service provider with a particular customer
or of a customer with a service provider.

o Retrieval of the state of a particular order. A user identifier for that order must be known and
stored in the node.

4.5 Additional conditions - release
One issue that is not yet described is that next steps in the process may only be performed when other
conditions are true. These are for instance in transshipment from a deepsea vessel to another transport
means for incoming cargo. For instance, the following conditions must be met:

• Commercial release – transport and handling charges of the previous transport leg and trans-
shipment have been paid. A bank can produce such a release; other relevant stakeholders
require that such a release token is published by an authorised bank.

Specification of the Multimodal Visibility Service 39

• Customs release – especially for incoming cargo, customs has the ability of inspection and has
to issue a release relevant for a terminal operator and carrier. Like a commercial release,
relevant stakeholders need to know that such a release token is provided by the appropriate
customs authority.

Further research is required as to the support of these tokens by Verif iable Credentials. Such tokens would
identify the holder like customs.

These conditions will be part of the state transitions to validate compliance. Of course, they need to be
validated at physical hand-over of cargo.

o

Specification of the Multimodal Visibility Service 40

5 Value added functionality.
The introduction to this document has identif ied four iterations, namely that of simply sharing events,
introduction of event logic, and generation of events from two perspectives. The previous section has
introduced event sharing and – logic as two iterations, each with a proposal for their APIs. This section will
introduce the other two iterations, namely:

o Generation of events from an itinerary perspective
o Automatic distribution of events to customers and for leg synchronization in a chain

Like itineraries, other physical actions can be specified. An example is the stuffing and stripping of
containers by a stuffing center. These will also result in events.

5.1 Itineraries
This is about a physical action generating events to relevant stakeholders. These physical actions are
represented by (physical) state transitions that can be modelled as follows for ‘transport’:

Figure 3 a transport itinerary

It shows that various transitions can take place based on actions that are known to the operator of a
transport means, for instance to load a container at a certain location. These are part of the pre-condition.
In case of a so-called milk run, a transport means will have an itinerary but no instructions for loading.
These may depend on certain conditions like a token raised by a place of call. This is not considered at
this moment.

The visibility events are identical to the ones that are specified in section 4.3. Additional to those, there are
an arrival and departure event: an arrival event constructs the association between a transport means (and
its cargo) and a location and a departure event ends this association. This is shown as follows:

Specification of the Multimodal Visibility Service 41

Figure 4 arrival and departure event structure

Arrival and departure events can have synonyms like ‘gate in’ and ‘gate out’ respectively to reflect arrival
and departure at a terminal or a warehouse with multiple gates.

The assumption is that a transport means will have an itinerary with load/unload instructions. These might
be amended during its itinerary. Load/unload actions can only be performed by a place of call, that functions
for instance as a transshipment location. In such a case, the events resulting from a physical action are
generated by the operator of that location. This is for instance the case for load/unload of vessels and
barges. The events are generated to a customer via the IT system of the transshipment location.

In other cases, like for road transport, the operator of a transport means will have on-board software
supporting the generation of events to its home base.

These types of updates of load/unload and changes in itinerary data are not visualized, but is supported
by on-board software of a transport means and/or IT solutions of a transshipment operator.

The states are specified as follows:

• Arrived - a transport means (and its load or empty) has arrived at a location.
• Under way – a transport means (and its load or empty) is underway utilizing an infrastructure.
• Fatal end – a transport means cannot complete its itinerary and is either moved to its home base

or must be repaired/destroyed.

An arrival (and departure) transition can be decomposed depending on the area of a place of call. For
instance, a port area can be considered a place of call, whereas in that port area several sub-locations
must be distinguished, for instance for piloting, tugging, and load/unload actions. The same is applicable
to accidents or incidents that require additional actions by for instance emergency operators.

The figure of transport itineraries consists of transitions that generate events. These transitions are
specified as (only state transitions generating events are shown):

(transitions will be completed)

State transition Arrival

Input state -

Pre-condition

Specification of the Multimodal Visibility Service 42

State transition Arrival

Error -

Firing rule Generate arrival_event

Post-condition (output state)

State transition load

Input state -

Pre-condition

Error -

Firing rule Generate load_event

Post-condition (output state)

State transition unload

Input state -

Pre-condition

Error -

Firing rule Generate unload_event

Post-condition (output state)

State transition departure

Input state -

Pre-condition

Error -

Firing rule Generate departure_event

Post-condition (output state)

Specification of the Multimodal Visibility Service 43

State transition position

Input state -

Pre-condition

Error -

Firing rule Generate position_event

Post-condition (output state)

State transition Accident/incident

Input state -

Pre-condition

Error -

Firing rule Generate accident/incident_event

Post-condition (output state)

5.2 Leg synchronization in a logistics chain
5.2.1 Cases for leg synchronisation

Whereas in the previous section, the multimodal visibility service specifies event sequencing and
supporting APIs including event logic in bilateral collaborations, this part is about utilizing received events
for generating new events. The following figure shows an example of a transaction tree of roles and
responsibilities for transport of a container via a port by sea to another country.

Specification of the Multimodal Visibility Service 44

Figure 5 example of a chain

Event sequencing in this chain may take the following:

Figure 6 event sequencing in the example

There are two examples, the events ‘container pickup’ and ‘container pre-arrival’, that can trigger informing
a customer and next leg (semi-)automatically. The pre-arrival will inform the terminal of the estimated time
of arrival of the pre-carrier; the pickup will inform a customer that the container is on its way.

This example shows two situations, namely updates of expectations received from a customer and updates
to next legs and a customer based on a progress event received from a service provider. Additionally, there
is the case whereby a next leg is a type of activity with a fixed schedule like flight or train departure. This
requires the previous leg to be finished on time. These three situations are visualized as follows.

Figure 7 three potential situations for automatically informing chain participants

The previous figure shows updates of expectations by a customer that can be based on progress made by
previous legs in a chain. These can be updates on the expected time at which a next leg could start, based
on an ETA of a previous one.

The simplest case of the chain coordination is where a carrier informs a customer on delivery of goods,

Specification of the Multimodal Visibility Service 45

whereas this customer informs its customer. This reflects for instance an eCommerce delivery activity or
the example given before of the container pickup and pre-arrival.

Only the first situation will be specified, since it deals with visibility events where the other two situations
are relevant to ordering.

Chain coordination is triggered after reception of a visibility event of a service provider, where the ETA for
and/or the completion of the activity is given (or the ETA is calculated). The relevant state transitions of
event logic are extended by producing an internal event as part of their f iring rule. The following state
transitions are relevant:

• ETA update – this can affect the execution of the next leg (or provide an indication of completion to
a customer)

• Incident/accident – similar as with ETA update, with the addition that a next leg may have to be
cancelled and the activity cannot be completed.

• Completed – this will provide an indication to a customer, whereas the next leg will already have
received the relevant cargo.

The firing rule of these transitions is updated with ‘generate (internal_event), resulting in the following
transition

State transition Internal transition

Input state - -

Event primitive Internal event
(UUID_receivedVisibility_event)

The UUID of the original visibility event is the
trigger. The assumption is that it has been
processed successfully by the recipient.

Pre-condition ReceivedVisibility_event (Digital Twin
(UUIDs)) exist in State_event
(receivedVisibility_event (recipient =
(customer and serviceProvider not equal
receivedVisibility_event (sender))) or
(recipient = (serviceProvider and customer
not equal receivedVisibility_event (sender)))

(state_event (serviceProvider;
visibility_event (unload, location) =
receivedVisibility_event (location)) or
(state_event (customer;
visibility_event(load, location) =
receivedVisibility_event (location))

First check: the Digital Twins of the received
visibility event participate in another state event.

Second check: validate if the received visibility
event represents the final leg of a chain or there
is an adjacent leg.

Error - If the pre-condition is false, no action is required.

Firing rule If (ETA event) and finalLeg then generate
(ETA event) to customer

If (ATA event) and finalLeg then generate
(unload event) to customr

If (ETA - or ATA event) and (ETA or ATA is
not in adjacentLeg (plannedPeriod)) then
generate (orderEvent(expected time = (ETA

The generated output by the firing rule depends
on the type of received visibility event. If it is an
ETA or ATA of the final leg, the customer must
be informed.

If it is an ETA or ATA relevant to an adjacent leg
(i.e. the ETA or ATA is not within the agreed
period), that service provider receives an

Specification of the Multimodal Visibility Service 46

State transition Internal transition

or ATA)) to adjacentLeg (serviceProvider)

If receivedVisibility_event = incidentEvent
(damage or loss) and finalLeg then
duplicate incidentEvent (recipient =
customer)

If receivedVisibility_event = incidentEvent
(damage or loss) for all adjacentLegs
cancel(adjacentLeg)

update.

The previous rule might be upgraded in case the
there is the delay is too long and the adjacent
legs must be cancelled.

In case of an incident event with (total) damage
or loss, at least the customer must be informed.
If there are adjacent legs, these must be
cancelled.

Post-condition (output state) All generate events are stored for a
customer

The agreed_order state with a Service
provider is update in case an orderEvent is
shared.

The agreed_order state is towards
‘cancelled’ in case a cancelation is shared.

The previous process may require an update if the location given by an unload or ETA event that has been
received is not equal to the unload location given by the customer and there is no adjacent leg. In that
case, the adjacent leg may have to be cancelled or start at the new location. An example is where a
container that has been discharged in Antwerp was expected to be transported from Rotterdam to its
destination.

In the previous case, it could also be that all adjacent legs are cancelled and a new adjacent leg to the
destination is to be organized.

Specification of the Multimodal Visibility Service 47

6 Development plan

6.1 Milestones
The development plan has the following milestones:

• IATA Hackaton (June 2023) – initial version. Initial stakeholders from Spain, Finland, IATA, and
the Netherlands develop a first version of the multimodal visibility service and demonstrate its use.
At least IATA and the Dutch team will share data, where the Dutch team will operate as Dutch
Customs. The other pairs still must set up their use case. From the Dutch perspective, the hackaton
is succesfull if Dutch Customs can share and access data of airlines via the IATA bridge.
In terms of functionality, the following approach is taken:

o VCs – at least a demonstrator is setup, at most it is integrated with the FEDeRATED node.
o Data sharing – at least the events that are specified in this document can be exchanged

and mapped with existing events of stakeholders and B2B/G2B queries (AWB, eFTI, eCMR,
etc.) support data access. There is not event logic, event distribution is simplif ied based on
location codes (see before), and no federated querying (query to the data source via one or
more data holders).

Additionally, the potential of generating a video applying AI will be explored, thus showing the
functionality.

• Evaluation (June 2023)– the IATA Hackaton will be evaluated by the FEDeRATED architecture
group and next steps will be formulated.

• FEDeRATED Hackaton (October 2023) – set up of a common pilot with the participants given in
this document.

• Final event (November 2023) – all functionality of this document must be implemented by at least
the FEDeRATED node, including the Service Registry for localization as part of the VCs. It must be
easy to include a new node in the infrastructure (on-boarding), upgrade the capabilities of a node,
and upgrade the functionality of the infrastructure. This must be demonstrated and potentially is the
basis for a training to interested users. This document serves as a specification to deploy a
multimodal visibility service.

• Final delivery or results (first quarter 2024) – this document is discussed within the FEDeRATED
Architecture Team and amended accordingly for delivery as an example of a Technology
Independent Service.

The first iteration of the Service Registry will only constitute the SHACL documents, since support of
interaction patterns requires an extension of the tool (Semantic Treehouse) that is currently applied for
constructing the Service Registry. A second iteration is expected to support interaction patterns.

Basically, the Service Registry for localization implies specification of additional constraints to the SHACL
documents of an interaction pattern. An approach is to use an existing module where the basic functionality
is to include these extra constraints. In fact, it means deleting constraints in the SHACL documents of the
multimodal visibility service (states, events, etc.) by selecting those that are applicable for a local interface,
and thus create a new SHACL that is a subset of the existing one.

The planning is organized according to these milestones. Detailed planning of towards the final event is
after the evaluation of the hackaton and completion of the specification.

Specification of the Multimodal Visibility Service 48

The planning towards the hackaton is to complete all openAPIs for the events and the specified queries, a
simple tool for localization, and the operation of multiple nodes in the Azure cloud environment of TNO.

6.2 Activities for preparation of the FEDeRATED hackaton
The proposed approach to the FEDeRATED hackaton is to implement the openAPIs described in this
document. These openAPIs are generic, they are made specific by including specific SHACL validations.
Thus, everyone will have the same openAPIs, but the functionality of these APIs is limited by the SHACL
validation.

The SHACL validation is a combination of modality and cargo type, see section 4. There are five modalities
(sea, air, road, rail, inland waterways) and four cargo types ((sea)containers, trailers, goods or pieces
(pallets, packages, etc.), ULDs (Uniform Load Devices)), leading to a large number of variations. There
are two constraints: ULDs are only transported by air; (sea)containers are not transported by air.

The objective of the FEDeRATED hackaton is to prototype eFTI. This implies the following SHACLs must
be generated for the (un)load – and ETA event (the proposal is not to implement the incident/accident or
position event): road, truck, trailer (optional), goods, (sea)containers Additionally, a query like the one
implemented for Codognotto will be implemented for data retrieval by an authority.

Some Living Labs may require additional SHACLs:

• Deplide – Simple: a SHACL for rail, train, wagon, container. There is no SPARQL formulated yet.
• Airline (IATA) – Dutch Customs: a SHACL for air, pieces, and ULD. A SPARQL for AWB data based

on One Record may have to be specified.

The following activities (with proposed due dates) must be performed for the FEDeRATED Hackaton:

Activity Responsible Due date

Installation of nodes in the TNO Azure
environment

Stephan

Specification of queries and results (at
least a B2B and G2B

Wout See this document

Generation of openAPIs and SHACLs Theodor

Configuration of the nodes with the
SHACL and RML

Stephan supported by Theodor

Generation of SHACLs for the queries Theodor

Availability of the openAPIs to hackaton
participants

Stephan

Simple configuration of the event
distribution mechanism (it must be
included in the previous step)

Stephan

Integration of the LLs with the published
openAPIS and SHACL

All participants During the hackaton?

Specification of the Multimodal Visibility Service 49

Activity Responsible Due date

Presentation or video of the solution Wout, Theodor, and other FEDeRATED
participants of the hackaton

During or after the hackaton

Finalization and discussion of the
document

FEDeRATED Architecture group First quarter 2024

Specification of the Multimodal Visibility Service 50

7 Concluding remarks
This document illustrates how a Technology Independent Service can be specified applying the concepts
of the FEDeRATED semantic model, not only those of event and Digital Twin, but also the data sharing
concepts. It also shows that a proper application of these concepts will result in an operational data sharing
infrastructure, although not all functionality is supported yet.

The example of TIS given in this document, a Multimodal Visibility Service, is not yet complete and has not
yet been validated with users. This would be a second step after validation by the FEDeRATED Living
Labs. The document also shows that an initial implementation could be sharing only visibility events,
whereas later event logic and value-added functionality can be implemented, resulting in a smart data
sharing infrastructure.

By taking the physical environment as leading, i.e. events are generated when physical actions are
performed, and implementing the value added functionality, all relevant stakeholders can be informed. This
might require additional services like ETA calculation services. The result will contribute to synchronization
of logistics activities, thus improving efficiency and potentially contributing to effectiveness.

Concluding, a stepwise approach can be taken contributing to business performance.

	Summary
	1 Introduction
	1.1 Objective
	1.2 Background
	1.3 Common pilot – multimodal supply chain visibility
	1.4 Technology Independent Services
	1.5 Layered set of agreements for implementation
	1.6 Design choices
	1.6.1 Design choices at logistics level
	1.6.2 Design choices at technical level

	1.7 Structure of this document

	2 Stakeholders and initial setting
	2.1 Stakeholders
	2.2 How to specify a use case
	2.3 Use case(s) and data
	2.4 IATA use case
	2.4.1 Data provided by ONE Record :
	2.4.2 Data response from BDI Node

	3 The infrastructure
	3.1 Setup of a multimodal visibility infrastructure
	3.2 Node functionality
	3.3 ONE Record – BDI hackathon architecture

	4 Multimodal visibility service specification
	4.1 The multimodal visibility service.
	4.2 Linked event protocol
	4.2.1 Event structure
	4.2.2 Event distribution for sharing events only
	4.2.3 Query formulation

	4.3 Event logic
	4.3.1 Data structure
	4.3.2 Initial state of the interaction pattern (agreed order)
	4.3.3 State transitions
	4.3.4 Event distribution associated with event logic

	4.4 Generic openAPIs
	4.4.1 Linked event APIs
	4.4.2 Additional APIs for event logic

	4.5 Additional conditions - release

	5 Value added functionality.
	5.1 Itineraries
	5.2 Leg synchronization in a logistics chain
	5.2.1 Cases for leg synchronisation

	6 Development plan
	6.1 Milestones
	6.2 Activities for preparation of the FEDeRATED hackaton

	7 Concluding remarks

